

1

 Fault Prediction in the Crowd?

By

NILS P. PEDERSEN

A Dissertation submitted in partial fulfilment

of the requirements for the degree of

MSc in Big Data and Digital Futures

Supervised by TESSIO NOVACK

University of Warwick

Centre for Interdisciplinary Methodologies

September 2020

2

“Det er en vanskelig sak å spå om fremtiden”

(Paasche, 1918)

3

Abstract

An investigation was conducted into a 40 GB, 326 million record event dataset.

This dataset contained anonymised event information representing performance,

availability and security issues of 172,000 network devices from approximately 150

Cisco Systems customers. It was hypothesised that network device event data

gathered from one customer environment could be used to predict events in

another customer environment. After analysis of the dataset, a binary model was

developed to predict when a process might request too much compute resources

on a device. The model was developed on one set of customer data and tested on

another unseen set of customer data. The Matthews correlation coefficient for the

model on the unseen test data was 0.66, the F1 score was 0.72, and the False

Negative rate was 27%. This was a substantial improvement over a model with no

skill.

4

List of Contents

Abstract ... 3

List of Tables ... 5

List of Figures .. 5

Acknowledgements ... 6

Dataset .. 7

Fault Model and Taxonomy ... 17

Problem Definition ... 19

Evaluation Metrics ... 22

Experiment 1 – Labels as Features ... 26

Data Preparation ... 26

Feature Selection .. 26

Technologies and Pipeline... 32

Model Training and Analysis .. 33

Experiment 2 – Issues as Features ... 39

Experiment 3 – Unseen Data .. 44

Discussion ... 46

Conclusions... 50

Appendix A – First 100 .. 52

Appendix B – Issue Labels .. 57

Appendix C – Issue Module IDs .. 64

References .. 66

5

List of Tables

Table 1 Attributes and Values ... 8

Table 2 Typical Dataset Row .. 9

Table 3 Binary Confusion Matrix ... 22

Table 4 Comparison of Feature Selection Methods .. 29

Table 5 Top 10 CPU/Memory Issues .. 39

Table 6 Metrics Comparison Between Experiments .. 42

Table 7 Train/Test and Unseen Data Split .. 44

List of Figures

Figure 1 Class Diagram .. 10

Figure 2 Events for Top and Bottom 10 Customers .. 11

Figure 3 Top 20 Issues by Date and Ordered from Most to Least 12

Figure 4 Events Over Time for Eight Different Issues ... 14

Figure 5 Detailed Timeline of Late Jan to Early Feb ... 15

Figure 6 Flap Counts for Severity Sets ... 16

Figure 7 Time-Series Failure Prediction .. 19

Figure 8 Features for Issue/Severity Prediction .. 28

Figure 9 Loss Learning Curve – Mutual Information Selected Features 30

Figure 10 Underfitting versus Overfitting ... 30

Figure 11 Confusion Matrix – Mutual Information Selected Features 31

Figure 12 Machine Learning Workflow .. 32

Figure 13 Labels LSTM Network ... 34

Figure 14 Loss Learning Curve – LSTM Labels .. 34

Figure 15 Boosting Algorithms Methodology ... 36

Figure 16 Experiment 1: ROC Curve .. 37

Figure 17 Experiment 1: PR Curve ... 37

Figure 18 Experiment 1: Confusion Matrix .. 38

Figure 19 Issues LSTM Network ... 40

Figure 20 Loss Learning Curve – LSTM Issues .. 41

Figure 21 Experiment 2: ROC Curve .. 41

Figure 22 Experiment 2: PR Curve ... 42

Figure 23 Experiment 2: Confusion Matrix .. 43

Figure 24 Unseen Data: PR Curve .. 45

Figure 25 Unseen Data: Confusion Matrix .. 45

6

Acknowledgements

I would like to express my sincere gratitude for all the help and support I have had

while completing this dissertation.

• Tessio Novack for being my dissertation supervisor

• Michael Castelle for suggesting the original research direction

• Emma Uprichard and Andreas Murr for advice with the practicalities of

conducting the research

• James Tripp and Iain Emsley for advice dealing with the large datasets and

help with R

• Don Allen and Dmitry Goloubev for providing the data

• Shishir Srivastava for help with SQL

• Christopher Adare for help with Python

• Rebecca Floyd and Matthew Leeming for proofreading the dissertation

And finally, my parents - without their support, this would not have been possible.

7

One of the fundamental goals of network management is predicting when faults

will occur, to avoid potential network failures, service and performance

degradation (Boutaba et al., 2018). This dissertation will describe an investigation

into network device data gathered from one customer environment and how to

apply that data to support device management tasks in another customer

environment. For example, if it is possible to predict whether a network switch will

experience an operational issue in one customer’s network by analysing that issue

in another customer’s network?

With the growing pervasiveness of computing systems, it is essential that we place

trust in the services they deliver (Eusgeld et al., 2008, p. v). Computer networks

have become an essential component in facilitating business processes in a global

economy (Allen & Goloubew, 2020, p. 1). Proactive fault management is a

method of enhancing the availability of these systems, and short-term predictions

are especially effective in preventing or limiting the damage caused by these

failures (Salfner et al., 2010, p. 10.1). The motivation for this investigation is to

increase the availability of the services provided by these networks by predicting

network device faults. By providing a warning of an impending fault on a device,

network administrators will be able to take remedial action prior to the fault

occurring and potentially impacting services that the business is reliant on.

The structure of this document is as follows: there will be a description of data and

how it maps to the motivation of this dissertation. Next, a discussion of the

literature will be presented, both from within the field of information technology (IT)

operations analytics1 and other domains with similar data properties and structure.

Then, the model and feature development and analysis will be described.

Dataset

Cisco Systems, Inc., is involved in designing and selling a range of products and

services across networking, security, communication, applications and the cloud. It

also offers technical support and advanced services. A part of Cisco’s product and

services portfolio includes infrastructure platforms; which constitute its core

8

networking technologies of switching, routing, data centre and wireless products

(Financial Times, 2020).

As part of its goal of providing customers with improved business continuity and

risk management, Cisco developed a service to identify device issues in these

core networking technologies proactively. The service leveraged the collective

diagnostic and remediation knowledge and experience from Cisco Technical

Assistance Centre (TAC) support engineers. The primary goal of the service is to

proactively identify device issues before they become problems that could

significantly impact network performance, availability and security (Cisco Systems,

2017). The service is known as Connected TAC and has been marketed as a

limited-time trial service to allow Cisco customers to run diagnostics routines on

one or more devices at a time, either through the command line or polled

automatically through an application installed on an on-premises Microsoft

Windows server (Cisco Systems, 2020).

The event data used in this investigation was obtained from the Cisco Connected

TAC development team. The events represent network device status information

collected by the Cisco Connected TAC service. The data was generated by

customers taking part in the Cisco Connected TAC trial. Due to the proprietary

nature of the data, some of them have been anonymised to protect commercial

and intellectual property. Table 1 shows a description of the main attributes of the

dataset.

Table 1

Attributes and Values

Attribute Description

hit_date Date/time when an event occurs

device_id Unique identifier for each device (anonymised)

gateway Software/hardware architecture, for example, Cisco IOS or NX-OS

hit_issue_id Unique identifier for each issue type detected on a device (anonymised)

hit_labels Tags or keywords describing the issue. A string with labels separated by

colons (partially anonymised)

hit_module Issue type - logic that triggers a specific issue (partially anonymised)

hit_severity The severity of the issue - Danger, Warning, Info, OK

cu_id Unique identifier for each issue customer (anonymised)

9

The dataset includes approximately 326 million events (or hits), from 130

customers, for 15 million issue life cycles on approximately 172,000 devices over a

period of thirty months, from January 2017 to November 2019. The hit_issue_id is

unique for that issue on that specific device. Thus, if an issue was resolved but

then reoccurred, the hit_issue_id would remain the same. Appendix A – First 100

shows the first 100 rows of the dataset, while

Table 2 shows an example row.

Table 2

Typical Dataset Row

hit_date device_id gateway hit_issue_id hit_labels hit_module hit_severity cu_id

2017-01-01

00:43:18

d2 g2 h13 :Automation:Prod6052_FW_

Appliance:Prod6044_

Prod6027_Prod6009_

Series_Adaptive_Security_

Appliances:Diagnostic

_Signature

ip_audit_

Prod

126

ok c2

Note: Individual hit_labels or tags are separated by colons. Thus, in this example, there are four separate labels,

Automation, Prod6052…, Prod6044…, and Diagnostic_Signature.

Casual observations of the dataset seemed to imply that anonymization seemed to

remove specific customer and product information while retaining as much of the

semantic information as possible.

Figure 1 shows the class diagram for the information described in the data. There

are three main objects, hit, device and customer. A hit is an event which captures

the severity of an issue (triggered by the hit_module logic) at a point in time. The

severity may be Danger, Warning, Info or OK. The code defining the module logic

can only trigger events on a specific architecture or gateway. For example, one

might have conceptually similar issues (for example, out of memory) for different

Cisco operating systems like IOS or NX-OS on switches, but they would be

implemented as different modules, under different gateways, and have different

names. Thus, the same type of conceptual issue may be implemented in multiple

separate modules yet, other than what may be inferred from the module name and

labels the data does not provide that association.

10

No metadata is provided in the dataset - only the event data itself. For example, no

information is provided about what industries customers represent. In addition,

other than deducing from labels, it is not known what the product version or type

the device belongs to. Perhaps more importantly, it is not known from the dataset

if a device can experience an issue unless that device has already previously

experienced that issue. In an analogy from the medical world, it would not be

possible to predict a prostate cancer diagnosis, unless that patient had already

received a previous prostate cancer diagnosis. Also, it would not be known if the

patient was male or female – and thus would be unable to develop prostate

cancer. An issue taken from the dataset might be Prod357_Enable_Password. As

the device product type is unknown, unless that device has already experienced

that issue, it is not possible to determine which devices can experience that issue

or not.

Figure 1

Class Diagram

Device

ID

Gateway

ID

Customer

ID1n

Hit

Date/Time

Issue

Severity

ID

1n

Label

Description

n

n

Module

An initial investigation of the data was conducted. The analysis was initially limited

to the first one million hits of the dataset because of software and hardware

constraints.

11

Figure 2 shows the number of event counts for the most and least active

customers from January 2017 to mid-April 2017. Based on the event count by

customer graphs shown in Figure 2, one might hypothesise that high event volume

customers used the automated event gathering feature of Connected TAC, while

those that generated one or so events per month used the manual method.

Figure 2

Events for Top and Bottom 10 Customers

cu_id = Customer ID

 an e ar pr

v
e
n
ts

cu id

 an e ar pr

v
e
n
ts

cu id

12

Figure 3

Top 20 Issues by Date and Ordered from Most to Least

Figure 3 shows the event count for the issues with the top 20 number of events

from the first one million hits. Most of the issues seem to be configurational in

nature, for example, telnet_input_enabled might refer to the fact that a device has

its telnet2 service enabled (and consequently may be more vulnerable to a security

breach). Only recently, Cisco published details of a Telnet vulnerability. In that

 an e ar pr

C
o
u
n
t

13

case, the interim remedy was to disable the Telnet process on the impacted

devices (Cisco Telnet Vulnerability, 2020). The issue long_cpu_hog_Prod126 may

be performance-related. CPU hogging refers to the case when a process is

deemed to request compute resources over a specific threshold. It may be normal

behaviour during a reboot of the device, or it may be indicative of a security issue,

such as a worm or virus operating in the network (Cisco Systems, 2016).

Figure 4 shows events associated with eight example issues over time. The green

‘dot’ indicates when that event occurred. The issues were chosen to exemplify

how severity could change (or not) over time. In an ideal world one might expect

the issue to occur with a high severity; then at some point come to be resolved

and return to a low severity – similar to Figure 4 E. However, the event issue

updates are under the control of the customer – it is dependent on how they have

configured event updates. As mentioned previously, devices can be polled for

events automatically or manually. Devices polled automatically can be scheduled

daily or weekly, and at a specific time of day (Cisco Systems, 2020, p. 18). The

event date/time is dictated by when the polling occurred. Thus, event data spikes

shown in Figure 2 in April may be due to customer increased polling activity and

not directly due to network device activity. In addition, when comparing events

from different customers, care must be taken as different customers may have

adopted different polling schedules, and the date/times associated with different

customer’s events may not e synchronised with one another.

14

Figure 4

Events Over Time for Eight Different Issues

Severity: 0= OK, 1=Info, 2= Warning, 3-Danger

 an e ar pr

e
v
e
ri
ty

 ar pr pr pr

 an e ar pr

C

e
v
e
ri
ty

 an e ar pr

D

 an an an

e
v
e
ri
ty

 an an an

 an e ar pr

e
v
e
ri
ty

15

Figure 5

Detailed Timeline of Late Jan to Early Feb

Severity: 0= OK, 1=Info, 2= Warning, 3-Danger

An expanded version of four days of the event data points in Figure 4A highlights

that there are multiple events in the same time series with the same severity. For

example, starting on Jan 29th, there are four events before the severity of that

issue changes to ‘Warning’ late in the evening on Jan 30th. Those four events are

redundant information. As no information on the polling schedule is provided, the

implication is that only events where severity changes are significant. In order to

reduce this redundancy, an algorithm was developed that would only select the

next event if the severity had changed from the previous event referencing that

issue. It has been labelled a flap, in deference to the concept of event flapping

(IBM, 2014).

Figure 6 shows an Upset diagram depicting those flap events and their severities.

Upset diagrams are a useful replacement for Venn diagrams when there are more

than three sets (Conway & Gehlenborg, 2019). The diagram shows the count for

 an e ar pr

 an e e

e
v
e
ri
ty

16

each event and corresponding severity for that flap. In other words, the diagram

shows the intersection of severities for each issue.

Figure 6

Flap Counts for Severity Sets

This diagram shows the intersection of all severities for each issue. For example, there are 45

issues that have OK, Info and Warning severities, and there are 96 issues that only have a danger

severity.

One interesting observation is that most issues have one severity. For example,

the 98 Danger severities (shown in yellow) have no prior lower severity notification

before that event occurs – the event just happens!

17

Fault Model and Taxonomy

In order to help determine the methods available to analyse the dataset, it is

advantageous to align the concept of issues in the dataset within the context of the

fault models used in the field of IT operations analytics. This will enable the

prediction methods that have been earlier developed by others to be leveraged in

this investigation.

The International Electrotechnical Commission (IEC) defines:

• Failure as the loss of ability [of a service] to perform as required.

• Fault as the inability to perform as required, due to an internal state, and

• Error as the discrepancy between a computed, observed, or measured

value or condition, and the true, specified or theoretically correct value or

condition.

(IEC, 2015)

The relationship between faults, errors and failures are often complex and

dynamic (Kochs, 2018, p. 10). For example, the result of an error by a programmer

leading to a system with a memory leak in its software. However, if this part of the

software is never run, the fault remains inactive. But, once the piece of code is run,

the software enters an error state - memory is consumed but is not released when

it is not needed anymore. This may be repeated multiple times, and at some point,

there might not be enough memory for some memory allocation to occur, and the

error is detected by the system. Nevertheless, if it is a fault-tolerant system, the

failed memory allocation still might not necessarily lead to a service failure – there

may be a backup system. Only if the system, as observed externally, cannot

provide its service acceptably, does failure occur (Salfner et al., 2010, p. 10:6).

The relationships between faults, errors and failures are not explicitly defined in

the dataset. Thus, analysis of the dataset may never result in the ability to predict

system failure without additional meta-information such as device attributes and

other configuration and service information. However, the Cisco dataset notion of

issue does seem to encompass the IEC concept of error and in some cases an

issue may also map to the notion of a fault, for example Prod356_crash_Defected.

18

The dataset may have the richness to predict errors and faults, but it is not

adequate to predict service failures.

Avizienis et al. (2004) provided a taxonomy of fault classifications. In terms of

lifecycle, they define that faults can be caused either during the development

stage of the system lifecycle or the operational stage of the system lifecycle.

Additionally, in the context of the system boundary (for example, a network device

like a router or switch), they define that faults can either originate internally to the

system or external to the system. (Avizienis et al., 2004, p. 16). For example, an

internal development fault might be the memory leak bug described previously, an

internal operational fault might be a configuration error performed by an

administrator, and an external operational fault might be reduced data throughput

performance due to the switch being overworked. These three classes of faults are

all apparent in the dataset. However, it is hypothesised that external faults will be

more straightforward to predict than internal faults as the errors that cause

external faults may already be captured in the dataset. It is unlikely that internal

errors caused during the product development process, say a bug, would be

detectable in the dataset.

“The key notion of failure prediction based on monitoring data is that errors

like memory leaks can be grasped by their side effects on the system such

as exceptional memory usage, CPU load, disk I/O, or unusual function calls

in the system. These side effects are called symptoms”. (Salfner et al.,

2010, p. 10:14)

A model has been presented which describes the progression of errors, to faults

and then to failures. In addition, a fault classification taxonomy (internal versus

external and development versus operational) was described. It was also

highlighted how the model and taxonomy mapped to the dataset. Finally, it was

hypothesised that it might be easier to predict external faults as the error

conditions that cause them would be more visible in the dataset.

19

Problem Definition

This next section will discuss the methods and techniques that have been adopted

by others with similar datasets. It will then describe the specific problem to be

addressed and the goals of that investigation.

In “A Survey of Online Failure Prediction Methods”, Salfner et al. (2010) describe

several different techniques that may be used to predict failures. The two closest

methods that mapped to the event-based dataset were failure prediction models

based on error reporting data and on symptom monitoring data (p. 10:16).

Figure 7

Time-Series Failure Prediction

A failure prediction model based on the prior occurrence of errors or symptoms A, B, and C.

Adapted from “A Survey of Online Failure Prediction Methods” by Salfner et al., 2010, ACM

Computing Surveys, Volume 42:3, page 10:16.

Figure 7 illustrates a failure prediction model whose goal is to determine the

probability of failure at some point in the future. The prediction is performed by

using some set of data (known as a data window) that has occurred before the

present time. These predictions could either be generated from error logs or

continuous symptom monitoring (like memory usage and CPU load). Due to the

similarities of both sets of time-series data, there is a considerable overlap in

analysis techniques performed on both types data – the main difference seemed

to be how and when those data were extracted from the system.

20

In “ Survey of Predictive Maintenance: Systems, Purposes and pproaches”,

Ran et al. (2019) proposed a classification of three methods for fault diagnosis and

prognosis namely, knowledge-based, traditional machine learning, and deep

learning (p. 4). They define the knowledge-based method as employing a priori

expert knowledge and deductive reasoning to generate a prediction. In fact, Cisco

Connected TAC is one such system, leveraging previously acquired technical

support knowledge and experience to attempt to proactively identify security,

configuration, software and hardware issues (Allen & Goloubew, 2020, p. 4).

Traditional machine learning examples include Logistic Regression, Decision

Trees and Support Vector Machines. Deep learning methods described include

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and

General Adversarial Networks (GANs) (Ran et al., 2019, p. 4).

Combining two traditional machine learning techniques, Ganguly et al. (2016) used

SVMs and Logistic Regression to build a model to predict hard disk failures in a

cloud environment. Similarly, the Ensemble methods AdaBoost and XGBoost have

also been used to predict hard disk failures (Huang, 2017). At the same time, deep

learning methods like Long Short Term Memory (LSTM) networks have been

increasingly employed in time-series failure detection. For example, in an

experiment comparing fault detection with four different sets of time-series data

LSTM networks were found to give better results than comparable RNNs

(Malhotra et al., 2015, p. 94). Also, a deep learning approach was used to predict

failure in a computer system using LSTM networks using a sliding data window to

fetch 50 data points (such as memory usage, CPU load and disk information) in

order to determine the failure state at the 51st data point (Dutta, 2019).

The core hypothesis is that there is a dependency between some specific error or

symptom events that will eventually lead to fault events. As no meta information

was provided about the relationship between devices, it seemed logical to initially

investigate a specific issue experienced on a set of devices. In other words, only

the events on the devices that experienced the issue would be included in the

dataset.

21

The basic process was to:

• Choose an externally generated fault.

• Select all events on all the devices that experience that fault.

• Perform a feature extraction process on those events.

• Train and evaluate the models on the extracted features.

Figure 3 shows the top 20 issues experienced. It seemed reasonable to pick one

of those issues as there would hopefully be enough data to conduct an analysis.

Of those top 20 issues, only long_cpu_hog_Prod126 seemed to be one fault that

might be caused by an external factor. Thus, long_cpu_hog_Prod126 was chosen

for the initial investigation – the issue of interest.

Therefore, the initial experiment will focus on developing models to predict if a

Warning or Danger severity event will occur on a specific device. Based on a data

window of previous events, the model will attempt to predict if the next event is the

issue of interest. After choosing the best model, it will be further trained in a

second experiment to see if it can predict that issue occurring on a device in

another customer’s environment. In order words, can network device issue data

sourced from one set of customers be used to predict that same issue at another

customer?

However, before starting the model development, it needs to be determined how

those models will be evaluated. The next section is a description and evaluation of

some binary classification model evaluation metrics.

22

Evaluation Metrics

Deciding on an appropriate metric is an important but difficult part of a machine

learning project. Even for something as seemingly simple as a binary classification

metric, there are many different ones, and each has different characteristics and

are suitable for different purposes (Czakon, 2020). The following metrics are

discussed in the context of this investigation:

Confusion Matrix

The performance of a classification model can be shown in a table, called a

confusion matrix, describing observed (i.e. what is true) and predicted classes for

the data (Kuhn & Johnson, 2013, p. 254), as shown below.

Table 3

Binary Confusion Matrix

Observed Predicted

Non-event Event

Non-event TN FP

Event FN TP

TN – True Negative, FP – False Positive,

FN – False Negative, TP – True Positive

Compared to accuracy, confusion matrices are a much better way to evaluate the

performance of a classification model (Géron, 2019, p. 90). For example, the

model shown in Figure 11 on page 31 has an accuracy of nearly 95%; however,

the model did not successfully predict any of the failure events correctly.

23

Receiver Operating Characteristics (ROC) curve and AUC

The True Positive rate (or sensitivity) is defined as the fraction of correctly

predicted events over all the observed events.

𝑡𝑝 − 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The False Positive rate is defined as the fraction of incorrectly predicted events

over all the observed non-events.

𝑓𝑝 − 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

A ROC graph plot tp-rate on the Y-axis and fp-rate is plotted on the X-axis (Jin

Huang & Ling, 2005, p. 300). A ROC curve portrays trade-offs between benefits

(TPs) and costs (FPs). Although the ROC curve is a two-dimensional

representation of classifier performance, a method to express classifier

performance as a single value is to calculate the area under the ROC curve - AUC

(Fawcett, 2006). For class-balanced problems, where both classes are distributed

evenly, accuracy and AUC are suitable metrics. For class-imbalanced problems,

where the total number of one class is much greater than the other, precision and

recall are better choices (Chollet & Allaire, 2018, p. 103).

Precision-Recall curve and F1-score

In many ways, credit card fraud detection is a similar problem to network device

fault prediction. For example, credit card purchases classification models may

prioritise the detection of fraudulent transactions. However, it is also important not

to cry wolf, to reduce the number of times the customer is contacted about

transactions that are flagged as unusual but turn out not to be fraudulent.

24

Precision is defined as the fraction of correctly predicted events over all the

predicted events.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall (also known as sensitivity) is defined as the fraction of the correctly

predicted events over all the observed events.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

In the credit card fraud detection example, optimising for recall helps with

minimising the chance of not detecting fraud. But this comes at the cost of

predicting fraud in normal transactions - increasing FPs. On the other hand,

optimising for precision prioritises correctly detecting fraud. But this comes at the

cost of missing fraudulent transactions more frequently - increasing FNs (Raschka

& Mirjalili, 2019, p. 320).

The F1-score is a measure of overall accuracy. It attempts to balance the effects

of optimising for precision and recall.

F1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The F1 score favours classification models that have similar precision and recall

(Géron, 2019, p. 93). However, as discussed in the credit card example, in the

case of network device fault prediction, it might be more prudent to optimise for

recall. Again using the results shown in Figure 11 on page 31 as an example, the

model’s precision was zero (and the recall value lew up my calculator).

25

Matthews correlation coefficient

F1 score is one of the more popular metrics in binary classification tasks.

However, these statistical measures are not optimal, especially on class-

imbalanced datasets. The Matthews correlation coefficient (MCC), is a more

representative metric which produces a high score only if the prediction obtained

good results in all four categories of a binary confusion matrix (Chicco & Jurman,

2020). The MCC can be calculated using the confusion matrix and is defined as:

MCC =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

MCC can take values between −1 and +1. 1 a perfect positive correlation, − a

perfect negative correlation, and 0 no correlation (Shmueli, 2020).

False Negative Rate

False Negative rate (or type II error) is defined as the fraction of the incorrectly

predicted non-events over all the observed events.

𝑓𝑛 − 𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁

In the credit card analogy, it is the fraction of missed fraudulent transactions that

the classification model fails to predict (Czakon, 2020).

These metrics will be captured during the experimental phase.

26

Experiment 1 – Labels as Features

Data Preparation

Due to the 40GB dataset size, it was decided to use a MySQL server to manage

the data. This would enable SQL queries in the initial investigation of the data and

gathering a subset of the data of interests for further analysis while reducing the

exposure to in-memory limitations (and workarounds) of programming languages

like R.

Feature Selection

After doing a literature search, a popular focus on this type of problem – using

time-series event data to predict future events was in the medical field. One well-

cited paper “Using recurrent neural network models for early detection of heart

failure onset” (Choi et al., 2017) seemed a great fit to the device event log data.

There is potentially an interesting contrast between event health record (EHR)

data and medical event prediction and network issue dataset and device failure

prediction.

So, the initial goal of the project will be to leverage the methodology presented in

the Choi et al. paper and apply it to the domain of network device failure

prediction. The methodology captured each unique EHR in an n-dimension binary

vector. The equivalent for this investigation would be to create a vector-based on

each unique hit_module (issue type). The count for unique hit_modules for all the

issues for devices that had experienced long_cpu_hog_Prod126 was 3618. Thus,

the N dimension for the vector would be 3618.

N unique hit_modules {

𝑙𝑜𝑛𝑔_𝑐𝑝𝑢_ℎ𝑜𝑔_𝑃𝑟𝑜𝑑126
𝑡𝑒𝑙𝑛𝑒𝑡_𝑖𝑛𝑝𝑢𝑡_𝑒𝑛𝑎𝑏𝑙𝑒𝑑

 ⋮
ℎ𝑖𝑡_𝑚𝑜𝑑𝑢𝑙𝑒𝑁

[1, 0, … 0]
[0 1, … 0]
 ⋮
[0, 0, … 1]

⏞
𝑁−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑒𝑐𝑡𝑜𝑟

27

There are advantages to removing predictors or feature dimensions prior to

modelling. Fewer dimensions mean reduced computational resource

requirements. Second, if two predictors are highly correlated, removing one might

mean a simpler, more transparent model (Kuhn & Johnson, 2013, p. 43).

However, unlike the EHR data, the issue dataset had an additional attribute

comprising labels, or tags, describing the issue. It would be possible to describe

every hit_module with the shared tags instead of the unique hit_module ID. The

count of the unique labels (as shown in Appendix B – Issue Labels) for issues for

devices that had experienced long_cpu_hog_Prod126 was only 363. Thus, a

combination of 363 labels now describes 3618 hit_modules and a 3618 long

vector could be represented by a 363 long vector – as shown below:

363 unique labels {

𝐶𝑃𝑈_1
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

⋮
𝑙𝑎𝑏𝑒𝑙363

[1, 0, … 0]
[0 1, … 0]
 ⋮
[0, 0, … 1]

⏞
363−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑒𝑐𝑡𝑜𝑟

The data window matrix for predicting the next Warning or Danger

long_cpu_hog_Prod126 was constructed by adding the individual label vectors

together for each issue at time t. In addition, the severity of the issue would be

appended to the end of the vector. For example, using the above definition as a

reference, for an issue with CPU_1 and Performance labels at time t, the vector

would be [, , … , st], where st is the severity at time t.

28

Figure 8

Features for Issue/Severity Prediction

Prediction Timeline
 𝒕−𝒘 ... 𝒕−𝟑 𝒕−𝟐 𝒕−𝟏 𝒕 𝒕+𝟏 𝒕𝒊𝒎𝒆
→

0⏞ 1⏞ 0⏞ 1⏞ 0⏞
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0
0 0 1 0 0
1 0 0 0 1
1 0 0 0 0
𝑠−𝑤⏟ 𝑠−3⏟ 𝑠−2⏟ 𝑠−1⏟ 𝑠 ⏟

st = issue severities at time t.

For this first prediction model, it was decided not to use the specific time/date just

the event sequence information. This would enable the application of the model to

different customer datasets without worrying about different polling schedules

between customers. Thus, the prediction at the present time t will be for the next

issue/severity in the sequence t+1, not for an issue/severity and time. The lookback

defines the data window described in Figure 7– the number (w) of previous

sequences to use as input variables to predict the next issue event in the

sequence. Thus, this prediction model has been defined as a many to one

machine learning problem – a sequence of data is delivered as input and a single

result provided as output.

29

Several methods have been described to predict sequences within the domain of

Fault Prediction. There are many binary classification algorithms (Fernández-

Delgado et al., 2014). However, it was initially decided to compare a deep learning

method with a traditional machine learning method. A simple Recurrent Neural

Network (RNN) model was chosen to investigate the label features. Initially, all 363

label features with a lookback of 15 were used to train the RNN model. However,

this resulted in a model that underfitted to the training data. By excluding labels

with less than 200 hits, the list of features was reduced from 363 to approximately

70, whilst increasing the lookback. Even then, underfitting still occurred.

Table 4

Comparison of Feature Selection Methods

Original labels/tags

long_cpu_hog_Prod126

CHI2 Mutual Information Ad-Hoc

Automation CPU_1 CPU_1 CPU_1

CPU_1 Management_1 Management_1 Memory

Diagnostic_Signature Prod6028 Prod6028 Performance

Prod6044_Prod6027_Prod

6009_Series_Adaptive_

Security_Appliances

Prod6044_Prod6027_Prod

6009_Series_Adaptive_

Security_Appliances

Prod6044_Prod6027_Prod

6009_Series_Adaptive_

Security_Appliances

Software_Failure Prod6052_FW_

Appliance

Optimization_Opportunity

Table 4 shows the original labels associated with the long_cpu_hog_Prod126 issue under

investigate, the top 5 features chosen by the chi-squared and mutual information methods, and the

three ad-hoc chosen features chosen by the author.

Another method had to be found to select the features used to train the model.

After exploring the literature, two methods were found that were recommended for

feature selection of categorical data are the chi-squared test and analysing the

mutual information between the features and dependent variables (Brownlee,

2019). The loss learning curve for the original RNN model for the mutual

information selected features is shown below. The curve for the chi-squared test

was similar. The shape of the curve is typical of an underfit model that appears too

simplistic (Brownlee, 2017).

30

Figure 9

Loss Learning Curve – Mutual Information Selected Features

Conceptually, underfitting is linked with the inability of a machine-learning

algorithm to capture the underlying structure of the training data. Contrary to that,

overfitting is associated with a model that corresponds too closely or exactly to a

particular set of data to be generalisable. Simply put, “underfitting models are sort

of dumb while overfitting models tend to hallucinate” - in other words, predict

things that don’t exist (Rodriguez, 2017). The problems of overfitting and

underfitting can be best shown by comparing a simple model to more complex

ones with the same data (Raschka & Mirjalili, 2019, p. 137), for example, a linear

decision boundary model to more complex, nonlinear models, as shown below.

Figure 10

Underfitting versus Overfitting

Reprinted from: Python Machine Learning: Machine Learning and Deep Learning with Python,

Scikit-learn, and TensorFlow 2, 3rd Edition (p. 137), by S. Raschka, 2019, Packt Publishing.

Epoch

31

This suggests that an underfitted model displayed in a confusion matrix would

result in many false negatives and not very many true positives. The next figure

shows the confusion matrix results for the model based on the mutual information

selected features.

Figure 11

Confusion Matrix – Mutual Information Selected Features

TN – True Negative, FP – False Positive, FN – False Negative, TP – True Positive

As shown in Figure 10, underfitting occurs when the model is too simple to learn

the underlying structure of the data. The main options for fixing the issue are:

• Define a more powerful model, with more parameters3.

• Choose better features for the machine learning algorithm (feature

engineering).

• Reduce the constraints on the model - e.g., decrease the regularisation and

dropout (Géron, 2019, p. 29).

As Géron (2019) mentioned, one option to rectify underfitting is to choose better

features for the learning algorithm (p. 29). In “An Introduction to Variable and

Feature Selection”, the first item in the checklist for feature selection was, “do you

have domain knowledge? If yes, construct a better set of ‘ad hoc’ features” (Guyon

& Elisseeff, 2003, p. 1159). Therefore, it was decided to attempt to choose

features that might be associated with directly device performance as those

features might also be predictors of future CPU hogging and increase the lookback

window to provide more data points. The issue labels CPU_1, Memory and

32

Performance (in addition to the feature Severity) seemed to map the closest to the

selection criteria and were selected to train the model that was to predict when the

issue long_cpu_hog_Prod126 was at Warning or Danger severities. Appendix B –

Issue Labels, shows the complete list of labels. The RNN model did not seem to

exhibit as much underfitting as it did with the previous attributes, so it was decided

to proceed with those three features to train a deep learning model and a more

traditional logistic regression model.

Technologies and Pipeline

A machine learning workflow was adopted as the one described in Figure 8. Once

constructed and debugged, the data pipeline helped experimentation by

supporting iterative workflows.

Figure 12

Machine Learning Workflow

Downloaded from: https://www.datasciencecentral.com/profiles/blogs/deep-

learning-pictures

The data was prepared and analysed on an MSI GL65 SC4 laptop, with an Intel

Core i7, an NVIDIA GeForce GTX 1650 and 64 GB RAM. The data were prepared

and initially analysed using MySQL and R, and the machine learning algorithms

were investigated using Keras (Chollet & others, 2015) and Scikit-learn

(Pedregosa et al., 2011) in Python.

A description of the high-level tasks and software used is shown below.

https://www.datasciencecentral.com/profiles/blogs/deep-learning-pictures
https://www.datasciencecentral.com/profiles/blogs/deep-learning-pictures

33

1. Prepare Data: MySQL

a. Select an issue (hit_module) of interest.

b. Generate a table with all issues of devices that have experienced the

issue of interest.

c. Export table to a comma-separated value text file (CSV).

2. Extract Features: RStudio

a. Import table from CSV.

b. Filter after first 10 million entries (memory limited larger data

manipulation).

c. Extract predictor features as separate entities.

d. Ordinal encode categorical features.

e. Generate feature to be predicted (y), recombine with predictors, and

export to CSV.

3. Train Model: Python

a. Normalise severities.

b. Create the datasets based on lookback and delay (how many steps to

predict into the future, which was one).

c. Configure and train models.

d. Save model (for potential future training/evaluation with additional data).

e. Generate graphs and attributes to facilitate evaluating the models.

The data and the code used to perform the analysis described in this dissertation

are available on GitHub at https://github.com/nilspeder/IM906.

Model Training and Analysis

The simple RNN used in the initial analysis can be good at forecasting sequences,

but they do not always perform as well on longer data sequences. On the other

hand, LSTM networks can be used very much like a basic RNN, and they will

perform much better, training will converge faster, and they will detect long-term

dependencies in the sequences (Géron, 2019 p. 511-5). After some informal

experimentation with different types of RNN, multiple layers and dropout, a single

layer LSTM was chosen. LSTM seemed to offer better performance than vanilla

RNN or GRU approaches, and there did not seem to be any benefit to adding

multiple layers to the model. There were five variables (CPU_1, Memory and

34

Performance, Severity and the predicted fault state) and the number of lookback

steps, defining the data window (initially described in Figure 7), was 250. The

delay, or how many steps in the sequence to predict into the future, was 1 step. A

graphical representation of this network is shown in Figure 13.

Figure 13

Labels LSTM Network

Diagram generated using: Netron (Roeder, 2010/2020).

Figure 14

Loss Learning Curve – LSTM Labels

35

The loss graph shown above still exhibited non-convergence between the training

and testing (also known as validation) curves that is typical of an underfitting

model. The model was tested again out to 500 epochs, and the pattern of loss

graph remained very similar. However, some of the classification metrics seemed

more promising. The Area Under the Curve (AUC) value was 0.86. The confusion

matrix showed a ratio of nearly 4:1 for the proportion of true positives to false

negatives, which was a lot better than the initial RNN. So, it was decided to

proceed further with the investigation.

The Scikit-learn logistic regression model was used with its default settings. The

AUC value as 0.81; however, the confusion matrix did not seem to be as good as

the LSTM. Since the pipeline was already constructed, it would now be relatively

easy to explore other methodologies. Perhaps Ensemble methods might provide a

better result?

Ensemble Methods

Recently many of the prize winners of Kaggle competitions5 are using ensemble

methods. Why are algorithms like AdaBoost and XGBoost the go-to models in

these competitions (Albert, 2018)?

“Suppose you pose a complex question to thousands of random people,

then aggregate their answers. In many cases, you will find that this

aggregated answer is etter than an expert’s answer. This is called the

wisdom of the crowd. Similarly, if you aggregate the predictions of a group

of predictors (such as classifiers or regressors), you will often get better

predictions than with the best individual predictor. A group of predictors is

called an ensemble; thus, this technique is called Ensemble Learning, and

an Ensemble Learning algorithm is called an Ensemble method.”(Géron,

2019, p. 189)

Therefore, the goal of an Ensemble algorithm is to combine several weak learners

into a stronger one. Boosting algorithms, as opposed to other Ensemble methods,

attempt to evaluate predictors sequentially, where each subsequent iteration

attempts to fix the errors of its predecessor (Singh, 2018).

36

Figure 15

Boosting Algorithms Methodology

Downloaded from: https://blog.bigml.com/2017/03/14/introduction-to-boosted-

trees/

AdaBoost (Freund & Schapire, 1997) and XGBoost (Chen & Guestrin, 2016) both

work by sequentially adding predictors to an ensemble, each one improving its

predecessor. However, they use different statistical methods to achieve this goal.

AdaBoost alters the weights of the predictor variables while XGBoost, similar to

regression analysis, tries to fit the new predictor to the residual errors made by the

prior predictor (Géron, 2019, p. 203).

Therefore, it was decided to employ the Scikit-learn AdaBoost and XGBoost in the

experiment as well. The starting point for initial model configurations was obtained

from such sources as towardsdatascience.com (Maklin, 2019) and

machinelearningmastery.com (Brownlee, 2016).

Results

Viewing the ROC Curve and PR Curve (Figure 16 and Figure 17) it seemed that

the LSTM network and XGBoost were most effective. However, the Confusion

Matrix (Figure 18) shows that the False Negative rate for the LSTM model was

better than XGBoost model. This would imply that the LSTM model would be less

likely to predict no fault when a fault was about to occur.

https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/
https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/

37

Figure 16

Experiment 1: ROC Curve

Figure 17

Experiment 1: PR Curve

38

Figure 18

Experiment 1: Confusion Matrix

The next stage of the experiment was to test the model on unseen data. Instead

of, ignoring customer_id and collecting the data as one continuous sequence and

then sorting on device_id (thus obtaining all sequence of all events for each device

that had experienced the issue), the data were first divided into groups of

customers. Then the sort on device_id was performed. The LSTM was trained on

one set of customer data and then was tested on the other set of customer data.

The results were equivalent to the Confusion Matrix shown in Figure 11 on page

31. The model was una le to predict faults in the other customer’s data. The

model could only predict True Negatives and False Negatives. Combinations of

different groups of customers were chosen, those that had many events versus

not so many, but the result was always the same. It seemed that the model was

too simple to predict what was being asked of it. That result was consistent with

the underfitting uncovered in the Loss Learning curve in Figure 14 on page 34.

39

Most of the Machine Learning literature seems to focus on overfitting, not

underfitting. ow could the model’s complexity e increased? La els were chosen

explicitly to reduce the complexity of having to manage every issue type. However,

the number of labels seemed to have been reduced (CPU_1, Memory and

Performance) to produce an overly simplified model.

Experiment 2 – Issues as Features

It was hypothesised that one way to increase the number of predictors would be to

use the label terms (cpu and memory) as search strings to gather corresponding

issue types (hit_module name). When a search for cpu and memory was

performed on the long_cpu_hog_Prod126 dataset, 94 issue types were returned

that contained those strings in their hit_module ID (shown in Appendix C – Issue

Module IDs). The table below shows the top 10.

Table 5

Top 10 CPU/Memory Issues

Issue Type Devices Events

long_cpu_hog_Prod126 9259 220964

asa_high_cpu_Prod126 7474 153901

Low_Free_Memory_Available 6861 148278

memory_used_greater_than_100percent_Prod334 6837 148259

snmp_cpu_hog_Prod126 6676 150181

extremely_long_cpu_hog 6282 144878

CPU_hogs_due_to_SNMP_polling 4724 33040

Defect2938_Defection_in_memory 3509 26063

low_memory_Prod126 479 4314

Prod128_compliancy_checks_CPU_memory_failure_Prod126 187 3172

The data preparation algorithm selected all issues with Memory and CPU in their

module_id name and then filtered out those issues with less than 500 events. The

resultant issue types were used as predictors for training with the same data as

the first experiment. The dependent variable was created in the same manner as

in the first experiment. After a few iterations attempting to minimise underfitting,

the LSTM network shown in Figure 19 was developed. It had 11 predictor

40

variables, and the lookback was 100. As before, there was no dropout or

regularisation.

Figure 19

Issues LSTM Network

Diagram generated using: Netron (Roeder, 2010/2020).

The Loss Learning Curve is shown in Figure 20. It shows the test model reducing

its losses over the training run. This improvement levelled off around epoch 50.

There seemed to be no indication of overfitting.

41

Figure 20

Loss Learning Curve – LSTM Issues

Figure 21

Experiment 2: ROC Curve

42

Figure 22

Experiment 2: PR Curve

The LSTM RNN and XGBoost seemed to be the most effective models in

Experiment 2, even though minimal optimisation of the XGBoost hyperparameters

occurred.

Table 6

Metrics Comparison Between Experiments

 Experiment 1 – Labels Experiment 2 – Modules

 LSTM XGBoost LSTM XGBoost

AUC 0.87 0.87 0.98 0.98

MCC 0.55 0.53 0.90 0.88

F1 0.78 0.76 0.92 0.91

FNR 0.22 0.27 0.12 0.12

The metrics for the prediction models using the module based features showed an

improvement over the label based features used in Experiment 1. The False

Negative rate for LSTM and XGBoost improved from 22% and 27% to 12%,

respectively. Encouraged by the improvement in the prediction model based

features derived from issues, it was decided attempt to retrain a model on

customer-specific data, so that it could be tested on unseen data from another

43

customer.

Figure 23

Experiment 2: Confusion Matrix

44

Experiment 3 – Unseen Data

The long_cpu_hog_Prod126 dataset was split in to two - between the top 10

customers by event count, as shown in the table below.

Table 7

Train/Test and Unseen Data Split

Customer

ID

Event

Count

Dataset

11 11071405 Train

17 7607379 Test

1 3763166 Test

4 1645975 Train

7 1604525 Test

21 1477668 Test

15 600788 Train

10 434417 Train

14 376397 Train

12 308809 Test

The same function was used to generate the training and testing data for both

datasets . But, when the data frames were returned from the ordinal encoding

process, there was a mismatch between the two data frames. In other words, one

dataset had dissimilar issue types. However, both datasets must have the same

features for the machine learning algorithm to function correctly. Even though this

implied possibly altering the unseen data, it was decided to modify each data

frame to be an intersection of the set of features. Perhaps, more correctly, the data

frames should have been a union of features with zeros padding the features in

the relative complement6. owever, for expediency’s sake, it was decided to

proceed with the intersection method. There were ten features, including severity

and the dependent variable, which was one less than the previous experiment.

The XGBoost algorithm was chosen; the lookback and other hyperparameters

remained the same as for the second experiment. The model was trained on the

first set of customer data; then the unseen set was used to test the model.

45

Figure 24

Unseen Data: PR Curve

Figure 25

Unseen Data: Confusion Matrix

As the number of events and features were reduced, not surprisingly, the

performance of the model was not as effective as in the second experiment. The

PR curve in Figure 24 shows that unseen data did not perform as well as the seen

test data. The confusion matrix showed a False Negative rate of 27%. That was a

46

substantial improvement over a model with no skill; the model did succeed in

predicting over 70% of the long_cpu_hog_Prod126 events correctly, even on the

unseen test data. Thus, it was shown, with the data provided, a model developed

from network events in one set of customers environments could potentially be

used to predict events in another distinctly separate set of customer environments.

Discussion

This next section includes a discussion of various topics that were revealed during

this investigation.

Healthcare Analogy

While conducting this investigation, it has been useful to think of analogous

problem domains – not just to leverage analysis techniques but to aid in

understanding the overall problem space. When initially investigating the fault

prediction domain space, it was beneficial to think about the medical diagnostic

field. There seemed to be many similarities between the problem of clinical event

prediction and network device event prediction. However, in terms of this

investigation, there is one major difference between the two, and that is in the

structure and purpose of the data. Electronic Health Records (EHRs) can contain

diagnoses, medications, treatment plans, immunisations, allergies, medical

imaging, and laboratory and test results (What Is an EHR?, 2019). One of the

goals of EHRs is to facilitate clinical diagnoses. The dataset used in this

investigation comprised network device status events collected by the Cisco

Connected TAC service. This dataset was not originally intended to facilitate

network device fault diagnosis. It was co-opted for a purpose that it was not

originally designed to support.

The paper by Choi et al. (2017) focused on predicting one clinical event, namely

heart failure. However, the Cisco Connected TAC dataset described many

different types of events. An emergency room (ER) triage admission process might

perhaps be a more accurate medical analogy. For example, a patient may be

admitted due to an internal clinical issue or because an external trauma had

47

occurred. The events leading up to a clinical event, like heart failure, versus a

trauma event, such as breaking a leg, would be very different. Therefore, it was

understood that to keep the scope of the investigation practicable that it would be

prudent to focus on one class of issue, not every possible issue. It was also

hypothesised that the externally caused events would have an increased likelihood

of prediction rather than events internal to the device – hence the initial focus on

CPU hogging.

Improvements to the Model

The models were developed to illustrate the potential for predicting future network

events if a network-device-issue data set sourced from one set of customers could

be used to predict that same issue within another customer’s environment. It was

not necessarily a primary goal to develop the most efficient prediction model. This

next section discusses ways in which the performance of the prediction models

could be enhanced.

Perhaps to the detriment of developing a better model, the training process was

simplified to reduce the complexity of the data manipulation. For example, the data

was fed into the model as one long sequence, ordered by device and date. It might

have been better to have fed the data in separate event sequences by device so

that one device’s event sequence would not contaminate another’s. In the clinical

example, it would not make sense for EHR data to be entered in one sequence

and instead divided by patient. Date/time was also removed as a feature from the

dataset. This reduced the utility of the model in terms of predicting when a CPU

hogging event might occur – limiting it to just the prediction of the next event. An

argument was presented that it was difficult to ensure that the polling schedules

would be consistent between different customers. That may be true; however,

there are prediction models that address irregular sampling rates (Futoma et al.,

2017) and predicting when an event may occur would increase the usefulness of

the predictions.

48

Another approach to developing a better model would be to increase the

complexity by adding more predictor features to the dataset. For example, when

Allen & Goloubew (2020) describe a different version of the dataset, they discuss

the attribute detection_type, which described the type of issue being detected (p.

8). For example, when selecting features, it might be beneficial to know which

issues were classified as availability, operational, or performance-related. In

addition, being able to classify like devices together as well as knowing which

issues could occur on which devices might also lead to the development of an

improved model.

In order to minimise the level of imbalance between the predicted classes and

simplify the analysis, the models predicted both a Warning and Danger severity

events. An alternative would have been to restrict the classifier to just predict a

Danger severity event. This might result in a model that was more useful to the

customer as it would be predicting an event whose symptoms might be more likely

to result in failure of the device. However, it would probably result in the need to

employ additional analysis methods, such as to accommodate extreme class

imbalance (Kuhn & Johnson, 2013, p. 419).

Finally, no rigorous effort was made to tune the boosting algorithms. Other better

classification algorithms, such as random forest (Fernández-Delgado et al., 2014,

p. 1) could also have been studied.

Redundant Data

When conducting the initial data investigation, there seemed to be a lot of

redundant events in the dataset, as highlighted in Figure 4 on page 14. As a

consequence, an algorithm was developed to remove that redundant information

before generating the Upset diagram shown in Figure 6. (Allen & Goloubew, 2020)

describe a similar issue of user interface noise (p. 7) in their paper, so hopefully,

this issue has been addressed in the front-end of the customer-facing product.

49

Other Analysis Techniques

Other techniques like process and sequence mining provide tools for the analysis

of event logs, resulting in the visualisation of the dependencies in the process

(Reinkemeyer, 2020, pp. 1–2). These methods may shed light on the causality

relationships that may exist in the event dataset and perhaps be used to generate

new features for the prediction models.

Taking a completely different tack, some type of time-based customer cohort or

churn analysis may also provide insight on different customers behaviour, how

long they participated in the trial and in what ways they made use of the

Connected TAC service.

Analysis Environment

Considerable time was dedicated to developing a technology environment that

could analyse the 40GB dataset. The major limiting factor was system memory

and not compute resources. Although the system was configured with 64GB RAM,

workarounds had to be developed to minimise out-of-memory errors.

50

Conclusions

To summarise, a machine learning classifier was developed for predicting a CPU

hogging issue using a network event dataset. This data was generated by the

Connected TAC service provided by Cisco Systems. The classifier was trained on

one set of customer data and tested on an unseen set of data from other

customer’s environments. Even though that dataset was not developed specifically

for event prediction, the classifier was found to have some efficacy in predicting

CPU hogging events. The current classifier would need to be refined and

developed further prior to production. However, if implemented in real-time, a

crowdsourced prediction classifier could potentially be used to complement the

existing knowledge-based Connected TAC service.

In addition, it is hypothesised that the methodology could be extended to other

devices and other external performance-related issues, such as memory.

However, it is unknown if it could be applied to internal issues like configuration

errors. Perhaps approaches like process mining, which attempts to discover

dependencies between events, might be more successful in exposing those

dependencies with configuration errors

1 IT Operations Analytics is the process of collecting, identifying, and analysing patterns to detect

problems and improve IT system performance and availability (IT Operations Analytics - BMC

Software, 2020).

2 Telnet is both a protocol and application which facilitates remote text-based communication

between a client and server over a network (Cisco Systems, n.d.).

3 Parameters are varia les used to configure the model’s algorithm. eatures are attri utes

describing the characteristics that define the scope of the problem.

4 MSI GL65 specifications: https://www.msi.com/Laptop/GL65-9SX-GTX/Specification

5 Kaggle is an online community known for its machine learning competitions:

https://www.kaggle.com/competitions

6 The relative complement of set A with respect to a set B, is the set of elements in B but not in A.

51

This page intentionally left blank.

52

Appendix A – First 100

hit_date
device
_id

gate
way

hit
_id

hit_labels hit_module
hit
_severity

cu_id

1/1/2017:12:13:08:AM 1 1 1 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060
Recommended_router_best_practic

es
1 1

1/1/2017:12:13:08:AM 1 1 2 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Router_hardening_unused_services 0 1

1/1/2017:12:13:08:AM 1 1 3 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060
Recommended_security_best_practi

ces
1 1

1/1/2017:12:13:08:AM 1 1 4
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 0 1

1/1/2017:12:13:08:AM 1 1 2 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Router_hardening_unused_services 0 1

1/1/2017:12:13:08:AM 1 1 2 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Router_hardening_unused_services 0 1

1/1/2017:12:13:08:AM 1 1 2 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Router_hardening_unused_services 0 1

1/1/2017:12:13:08:AM 1 1 5 :VPN:Automation
Prod357_Weak_Encryption_Algorith

ms
1 1

1/1/2017:12:30:54:AM 1 1 6 :Device_Hardening:Automation
Prod357_unencrypted_password_fo

und
1 1

1/1/2017:12:30:54:AM 1 1 7 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Prod356_type_4_password_used 1 1

1/1/2017:12:30:54:AM 1 1 8 :Device_Hardening:Automation Prod357_Enable_Password 1 1

1/1/2017:12:30:54:AM 1 1 4
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 0 1

1/1/2017:12:43:18:AM 2 2 9
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Management_1
configuration_locked_in_another_se

ssion
0 2

1/1/2017:12:43:18:AM 2 2 10
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Traffic
significant_TCP_embryonic_connect

ions_dropping
0 2

1/1/2017:12:43:18:AM 2 2 11
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Management_1:Parser:Software
asa_non_release_signed_image 0 2

1/1/2017:12:43:18:AM 2 2 12
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Optimization_Opportunity
wide_open_acl 0 2

1/1/2017:12:43:18:AM 2 2 13
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Diagnostic_Signature
ip_audit_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 14
:Application_Inspection:Automation:Prod6044_Prod6027_Prod6009_Series_

Adaptive_Security_Appliances:Diagnostic_Signature:Parser:Performance
Prod122_CX_IPS_performance_fail

over_problem_Defect2041_Prod126
0 2

53

hit_date
device
_id

gate
way

hit
_id

hit_labels hit_module
hit
_severity

cu_id

1/1/2017:12:43:18:AM 2 2 15
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Optimization_Opportunity
recommended_asa_security_best_p

ractices
1 2

1/1/2017:12:43:18:AM 2 2 16
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Prod6059_1:Failover:Parser:troubleshooting
failover_int_checks_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 17
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Prod6059_1:Optimization_Opportunity
acl_element_count_Prod126 1 2

1/1/2017:12:43:18:AM 2 2 18
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Automation:Optimization_Opportunity
unused_config_module 1 2

1/1/2017:12:43:18:AM 2 2 19
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Prod6059_1:MPF:Optimization_Opportuni
ty

infinite_conn_timeout_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 20
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
snmp_cpu_hog_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 21 :Management_1:Prod6023:Software_Failure:Automation
Defect4907_Prod819_not_displayin

g_active_Prod80_clients
1 2

1/1/2017:12:43:18:AM 2 2 22
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Optimization_Opportunity:Routing
route_check_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 23 :Security:Optimization_Opportunity:Automation console_timeout_of_0 1 2

1/1/2017:12:43:18:AM 2 2 24
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Hardware_Limitation:Prod6060:Interface:
Optimization_Opportunity

show_interface_output_checks_bv3 0 2

1/1/2017:12:43:18:AM 2 2 25 :Management_1:Optimization_Opportunity:Automation
Prod121_NTP_authentication_not_e

nabled
1 2

1/1/2017:12:43:18:AM 2 2 26
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Memory
low_memory_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 27
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Bot

net_Traffic_Filter:Automation:Diagnostic_Signature
botnet_updater_fails_ssl 0 2

1/1/2017:12:43:18:AM 2 2 28
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Optimization_Opportunity:Sham_Link
asa_high_cpu_Prod126 0 2

1/1/2017:12:43:18:AM 2 2 29
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Configuration:Diagnosis:Diagnostic_Signature:Parse
r

two_contexts_same_config_url 0 2

1/1/2017:12:43:18:AM 2 2 30
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Interface:Optimization_Opportunity:Traffic
throughput_calc_Prod126 1 2

1/1/2017:12:43:18:AM 2 2 31
:Automation:Bugs:Prod6044_Prod6027_Prod6009_Series_Adaptive_Securit

y_Appliances:Diagnostic_Signature:Interface:Parser:troubleshooting
Defect1 0 2

1/1/2017:12:43:18:AM 2 2 32
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 0 2

1/1/2017:12:43:18:AM 2 2 33 :VPN:Optimization_Opportunity:Automation
Prod121_weak_encryption_hash_al

gorithms_in_use
1 2

54

hit_date
device
_id

gate
way

hit
_id

hit_labels hit_module
hit
_severity

cu_id

1/1/2017:12:43:18:AM 2 2 34 :Management_1:Optimization_Opportunity:Automation
Timestamp_logging_disabled_in_co

nfig
1 2

1/1/2017:12:43:18:AM 2 2 35
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
long_cpu_hog_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 14
:Application_Inspection:Automation:Prod6044_Prod6027_Prod6009_Series_

Adaptive_Security_Appliances:Diagnostic_Signature:Parser:Performance
Prod122_CX_IPS_performance_fail

over_problem_Defect2041_Prod126
0 2

1/1/2017:12:45:11:AM 2 2 35
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
long_cpu_hog_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 31
:Automation:Bugs:Prod6044_Prod6027_Prod6009_Series_Adaptive_Securit

y_Appliances:Diagnostic_Signature:Interface:Parser:troubleshooting
Defect1 0 2

1/1/2017:12:45:11:AM 2 2 18
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Automation:Optimization_Opportunity
unused_config_module 1 2

1/1/2017:12:45:11:AM 2 2 15
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Optimization_Opportunity
recommended_asa_security_best_p

ractices
1 2

1/1/2017:12:45:11:AM 2 2 21 :Management_1:Prod6023:Software_Failure:Automation
Defect4907_Prod819_not_displayin

g_active_Prod80_clients
1 2

1/1/2017:12:45:11:AM 2 2 10
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Traffic
significant_TCP_embryonic_connect

ions_dropping
0 2

1/1/2017:12:45:11:AM 2 2 16
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Prod6059_1:Failover:Parser:troubleshooting
failover_int_checks_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 20
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
snmp_cpu_hog_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 29
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Configuration:Diagnosis:Diagnostic_Signature:Parse
r

two_contexts_same_config_url 0 2

1/1/2017:12:45:11:AM 2 2 9
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Management_1
configuration_locked_in_another_se

ssion
0 2

1/1/2017:12:45:11:AM 2 2 22
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Optimization_Opportunity:Routing
route_check_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 26
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Memory
low_memory_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 17
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Prod6059_1:Optimization_Opportunity
acl_element_count_Prod126 1 2

1/1/2017:12:45:11:AM 2 2 12
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Optimization_Opportunity
wide_open_acl 0 2

1/1/2017:12:45:11:AM 2 2 23 :Security:Optimization_Opportunity:Automation console_timeout_of_0 1 2

1/1/2017:12:45:11:AM 2 2 27
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Bot

net_Traffic_Filter:Automation:Diagnostic_Signature
botnet_updater_fails_ssl 0 2

1/1/2017:12:45:11:AM 2 2 11
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Management_1:Parser:Software
asa_non_release_signed_image 0 2

55

hit_date
device
_id

gate
way

hit
_id

hit_labels hit_module
hit
_severity

cu_id

1/1/2017:12:45:11:AM 2 2 28
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Optimization_Opportunity:Sham_Link
asa_high_cpu_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 25 :Management_1:Optimization_Opportunity:Automation
Prod121_NTP_authentication_not_e

nabled
1 2

1/1/2017:12:45:11:AM 2 2 13
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Diagnostic_Signature
ip_audit_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 19
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Prod6059_1:MPF:Optimization_Opportuni
ty

infinite_conn_timeout_Prod126 0 2

1/1/2017:12:45:11:AM 2 2 34 :Management_1:Optimization_Opportunity:Automation
Timestamp_logging_disabled_in_co

nfig
1 2

1/1/2017:12:45:11:AM 2 2 30
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Interface:Optimization_Opportunity:Traffic
throughput_calc_Prod126 1 2

1/1/2017:12:45:11:AM 2 2 33 :VPN:Optimization_Opportunity:Automation
Prod121_weak_encryption_hash_al

gorithms_in_use
0 2

1/1/2017:12:45:11:AM 2 2 32
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 0 2

1/1/2017:12:45:11:AM 2 2 24
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Hardware_Limitation:Prod6060:Interface:
Optimization_Opportunity

show_interface_output_checks_bv3 0 2

1/1/2017:12:45:58:AM 1 1 8 :Device_Hardening:Automation Prod357_Enable_Password 1 1

1/1/2017:12:45:58:AM 1 1 7 :Device_Hardening:Automation:Diagnostic_Signature:Prod6060 Prod356_type_4_password_used 1 1

1/1/2017:12:45:58:AM 1 1 6 :Device_Hardening:Automation
Prod357_unencrypted_password_fo

und
1 1

1/1/2017:12:45:58:AM 1 1 4
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 0 1

1/1/2017:12:55:10:AM 3 2 36
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Diagnostic_Signature
ip_audit_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 37
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Optimization_Opportunity
recommended_asa_security_best_p

ractices
1 3

1/1/2017:12:55:10:AM 3 2 38
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Bot

net_Traffic_Filter:Automation:Diagnostic_Signature
botnet_updater_fails_ssl 0 3

1/1/2017:12:55:10:AM 3 2 39
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Prod6059_1:Optimization_Opportunity
acl_element_count_Prod126 1 3

1/1/2017:12:55:10:AM 3 2 40
:ACL:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security

_Appliances:Diagnostic_Signature:Optimization_Opportunity
wide_open_acl 0 3

1/1/2017:12:55:10:AM 3 2 41
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
long_cpu_hog_Prod126 0 3

56

hit_date
device
_id

gate
way

hit
_id

hit_labels hit_module
hit
_severity

cu_id

1/1/2017:12:55:10:AM 3 2 42 :Security:Optimization_Opportunity:Automation console_timeout_of_0 1 3

1/1/2017:12:55:10:AM 3 2 43
:Application_Inspection:Automation:Prod6044_Prod6027_Prod6009_Series_

Adaptive_Security_Appliances:Diagnostic_Signature:Parser:Performance
Prod122_CX_IPS_performance_fail

over_problem_Defect2041_Prod126
0 3

1/1/2017:12:55:10:AM 3 2 44
:Automation:Bugs:Prod6044_Prod6027_Prod6009_Series_Adaptive_Securit

y_Appliances:Diagnostic_Signature:Interface:Parser:troubleshooting
Defect1 0 3

1/1/2017:12:55:10:AM 3 2 45
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Management_1:Parser:Software
asa_non_release_signed_image 0 3

1/1/2017:12:55:10:AM 3 2 46 :VPN:Optimization_Opportunity:Automation
Prod121_weak_encryption_hash_al

gorithms_in_use
1 3

1/1/2017:12:55:10:AM 3 2 47
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Optimization_Opportunity:Routing
route_check_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 48
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Interface:Optimization_Opportunity:Traffic
throughput_calc_Prod126 1 3

1/1/2017:12:55:10:AM 3 2 49 :Management_1:Optimization_Opportunity:Automation
Timestamp_logging_disabled_in_co

nfig
1 3

1/1/2017:12:55:10:AM 3 2 50
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Configuration:Diagnostic_Signature:Prod6059_1:MPF:Optimization_Opportuni
ty

infinite_conn_timeout_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 51
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Software_Failure
snmp_cpu_hog_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 52
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Device_Hardening:Diagnostic_Signature:Prod6060:Parser:Management_1
telnet_input_enabled 1 3

1/1/2017:12:55:10:AM 3 2 53
:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances:Dia

gnostic_Signature:Management_1
configuration_locked_in_another_se

ssion
0 3

1/1/2017:12:55:10:AM 3 2 54
:Automation:Prod6052_FW_Appliance:Prod6044_Prod6027_Prod6009_Seri

es_Adaptive_Security_Appliances:Configuration:Diagnosis:Diagnostic_Signature:Parse
r

two_contexts_same_config_url 0 3

1/1/2017:12:55:10:AM 3 2 55
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:License:Traffic:licensing
Defect3_conns_dropped_with_licen

se_limit_Prod126
0 3

1/1/2017:12:55:10:AM 3 2 56
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Hardware_Limitation:Memory
256mb_5505_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 57
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Memory
low_memory_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 58
:Automation:CPU_1:Prod6044_Prod6027_Prod6009_Series_Adaptive_Secu

rity_Appliances:Diagnostic_Signature:Optimization_Opportunity:Sham_Link
asa_high_cpu_Prod126 0 3

1/1/2017:12:55:10:AM 3 2 59
:Automation:Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Ap

pliances:Diagnostic_Signature:Traffic
significant_TCP_embryonic_connect

ions_dropping
0 3

57

Appendix B – Issue Labels

Tag / Label Events

1 Automation 9249928

2 Diagnostic_Signature 6728559

3 Prod6060 3003747

4 Prod6044_Prod6027_Prod6009_Series_Adaptive_Security_Appliances 2984271

5 Configuration 2363640

6 Bugs 1982050

7 Optimization_Opportunity 1918388

8 NX_OS 1686555

9 Software_Failure 1490081

10 Crash 1228464

11 Parser 852486

12 Routing_Protocols 754951

13 Interface 744118

14 Failover 538493

15 Hardware_Limitation 510041

16 NetworkAddressTranslation 506936

17 Prod6059_1 491489

18 Management_1 434831

19 troubleshooting 393194

20 Prod6052_FW_Appliance 387020

21 OSPF 343531

22 Memory 327564

23 Diagnosis 292519

24 Routing 286577

25 Healthcheck 280593

26 ACL 247119

27 Security 246064

28 Education 223184

29 Logging 222658

30 Device_Hardening 216477

31 CPU_1 206909

32 BGP 202848

33 Software_Limitation 181266

34 VPN 175832

35 Hardware_Failure 157428

36 Platform 154042

37 Voice 139697

38 Prod6066 138541

39 MPLS 137642

40 Memory_Depletion 129366

41 Hardware 119254

42 Application_Inspection 114200

43 Prod6023 114149

44 EIGRP 103970

45 Voice_Protocol 103957

46 Performance 102733

47 Traffic 95235

48 MPF 94935

49 Traceback 86730

50 licensing 76690

51 Best_Practice 75671

52 Operations_Guide 75671

58

Tag / Label Events

53 Validation 75671

54 Field_Notice 74283

55 Voice_Gateway 70832

56 Voice_Apps 69504

57 SIP 69225

58 Prod6054 69091

59 SRST 68952

60 id_Prod6013_Switch 68919

61 PBR 68615

62 System 68420

63 AAA 59494

64 Software 52105

65 Botnet_Traffic_Filter 51150

66 Sham_Link 49501

67 Prod6093 48103

68 Prod6034 46015

69 Prod6028 44521

70 Content_Filtering 43065

71 Transparent_Firewall 43059

72 Prod6043_Switch 42501

73 Prod6060_XE 38787

74 Access_List 38612

75 System_Resource 37250

76 Prod6026 37201

77 Call_Routing 35806

78 Prod6098 34637

79 Fax_Modem 34635

80 NTP 34600

81 Dial_peer 34576

82 Prod6053 34573

83 Prod6053_Enterprise 34573

84 Multicast 34398

85 IGMP 34333

86 IP_Multicast 34333

87 SCCP 34328

88 RIP 34293

89 RIPv2 34293

90 MPLS_TE 34224

91 id_Prod6000_Switch 33715

92 id_Prod6004_Switch 33423

93 id_Prod6002_Switch 33099

94 Dynamic_Fabric_Automation 32178

95 Prod6067 32178

96 Speed 32178

97 Clustering 18577

98 Prod6082_Prod6014 16455

99 Incident1 15044

100 Prod6080 14977

101 Prod6082_Prod6012 13478

102 Sourcefire_on_Prod6027 12120

103 Prod6070 11802

104 License 10181

105 Prod6057 9985

106 Prod6082_Prod6008 9928

59

Tag / Label Events

107 Prod6082_2000 9824

108 Spanning_Tree 8923

109 MDS 8432

110 MTS 8432

111 Reset 8027

112 id_Prod6005_Switch 6600

113 System_Management 6019

114 Prod6082_Prod6010 3927

115 Diagnostic signature 3715

116 Parity_Error 3546

117 GOLD 3198

118 Tool 3104

119 PKI 2270

120 Prod6082_Prod6020 1939

121 IPSEC 1783

122 Prod6082_Prod6009 1727

123 Forwarding_Engine 1201

124 vPC 1155

125 Other 1094

126 Switching 1018

127 Power 1003

128 Voice_Security 785

129 Diagnostic-signature 719

130 Diagnostic_Signature_ 660

131 id_Prod6007_Switch 632

132 Prod6082_Prod6021 543

133 Etherchannel 519

134 Transceiver 509

135 Route 467

136 IPv6 374

137 PFR 343

138 Diagnostic_Signature_Prod6093_Automation_Diagnostic signature 339

139 AppNav_Controllers 337

140 Debugging 318

141 Diagnostic_Signature_Prod6093_Prod6082_Prod6014_Automation_Bugs_Software_Failure 307

142 Diagnostic_Signature_Automation_Prod6080_Hardware_Failure_Bugs 237

143 id_Prod6022_Router 208

144 Prod6082_Prod6015 183

145 Prod6082_Prod6016 177

146 Temperature 176

147 Python 170

148 Diagnostic_Signature_Prod6093_Prod6080_Prod6070_Software_Failure_Automation_Bugs 169

149 Diagnostic_Signature_Prod6080_Automation_Prod6093_Software_Failure_Bugs 142

150 Diagnostic_Signature_Prod6082_Prod6014_Automation_Bugs_Software_Failure 142

151 Diagnostic_Signature_Prod6093_Prod6082_Prod6014_Bugs_Software_Failure_Automation 142

152 Diagnostic_Signature_Prod6080_Automation_Bugs_Software_Failure_Prod6093_Prod6070 141

153 Diagnostic_Signature_Prod6080_Bugs_Software_Failure_Automation_Prod6093 141

154 Diagnostic_Signature_Prod6080_Software_Failure_Bugs_Prod6093_Prod6070_Automation 141

155 Diagnostic_Signature_Prod6080_Prod6070_Bugs_Software_Failure_Automation_Prod6093 140

156 Prod6082_Prod6019 139

157 EEM 137

158 ASR_1 130

159 Cognitive 109

160 PSU 109

60

Tag / Label Events

161 Prod6077 90

162 Diagnostic_Signature_Prod6082_Prod6012_Software_Failure_Bugs_Automation_Prod6093 82

163 Diagnostic_Signature_Prod6080_Software_Failure_Bugs_Prod6093_Automation 80

164 Flash 77

165 Diagnastic signature 75

166 Diagnostic_Signature_Prod6070_Software_Failure_Bugs_Automation_Prod6093 73

167 MTU 72

168 GRE 65

169 Diagnostic_Signature__ 50

170 SSO 50

171 Fabric 49

172 Diagnostic_Signature_Software_Failure_Automation_Bugs_Prod6080 40

173 Module 40

174 Errors 38

175 Redundancy 31

176 Voice_Quality 31

177 xbar 29

178 Storage 28

179 Bootup 27

180 Diagnostic_Signature_Automation_Software_Failure_Bugs_Prod6082_Prod6010_Prod6082_Prod6012 27

181 RPR 27

182 RPR_1 27

183 L2L 26

184 Call_Control 24

185 Duplex 24

186 Stacking 23

187 DHCP 21

188 Diagnostic_Signature_Prod6070_Bugs_Software_Failure_Automation_Prod6093 21

189 RMA 21

190 FCOE 19

191 Prod6079 19

192 Diagnostic_Signature_Prod6080_Software_Failure_Bugs_Automation_Prod6093 18

193 Enhancement 18

194 Bug 16

195 CoPP 16

196 Diagnostic_Signature_Prod6070_Automation_Bugs_Software_Failure_Prod6093 16

197 Lead_Generation 16

198 Netflow 16

199 Switchover 16

200 Diagnostic_Signature_Prod6080_Prod6093_Software_Failure_Bugs_Automation 15

201 Diagnostic_Signature_Prod6080_Software_Failure_Automation_Bugs 15

202 Detect6350 14

203 Prod6084 14

204 Diagnostic_Signature_Prod6080_Software_Failure_Automation_Bugs_Prod6093 13

205 Diagnostic_Signature_Prod6080_Software_Failure_Automation_Prod6093_Bugs 13

206 Silent_Monitoring 13

207 Diagnostic_Signature_Automation_Prod6093_Prod6080_Software_Failure_Bugs 12

208 Diagnostic_Signature_Prod6080_Automation_Prod6093_Bugs_Software_Failure 12

209 Diagnostic_Signature_Prod6080_Automation_Software_Failure_Bugs_Prod6093 12

210 Diagnostic_Signature_Prod6080_Prod6093_Automation_Bugs_Software_Failure 12

211 MAC_Address 12

212 Diagnostic_Signature_Prod6080_Automation_Bugs_Software_Failure_Prod6093 11

213 Prod6101 11

214 Diagnostic_Signature_Prod6080_Software_Failure_Bugs_Prod6093_Software_Failure_Automation 10

61

Tag / Label Events

215 LACP 10

216 PoE 10

217 Diagnostic_Signature_Prod6070_Automation_Prod6093_Software_Failure_Bugs 9

218 Diagnostic_Signature_Prod6070_Automation_Software_Failure_Bugs_Prod6093 9

219 Diagnostic_Signature_Prod6070_Prod6093_Software_Failure_Automation_Bugs 9

220 Diagnostic_Signature_Prod6080_Prod6093_Software_Failure_Automation_Bugs 9

221 Automaiton 8

222 Diagnostic-sognature 8

223 Diagnostic_Signature_Prod6079_Prod6070_Automation_Software_Failure_Bugs_Prod6093 8

224 Diagnostic_Signature_Prod6080_Software_Limitation_Automation_Prod6093_Bugs 8

225 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Bugs_Prod6093_Automation 8

226 DMVPN 8

227 NHRP 8

228 Diagnostic_Signature_Automation_Software_Failure_Bugs_Prod6080 7

229 Diagnostic_Signature_Prod6070_Automation_Prod6093_Bugs_Software_Failure 7

230 Diagnostic_Signature_Prod6082_Prod6014_Automation_Software_Failure_Bugs_Prod6093 7

231 Software_Failuref 7

232 V1 6

233 Diagnostic_Signature_Hardware_Failure_Prod6093_Prod6082_Prod6014_Automation_Bugs 6

234 Diagnostic_Signature_Prod6070_Prod6093_Software_Failure_Bugs_Automation 6

235 Diagnostic_Signature_Prod6070_Software_Failure_Bugs_Prod6093_Automation 6

236 Diagnostic_Signature_Prod6093_Automation_Bugs_Software_Failure 6

237 Diagnostic_Signature_Prod6093_Prod6080_Automation_Software_Failure_Bugs 6

238 Prod6082_Prod6014_Bugs 6

239 Prod6083 6

240 Troubleshooting_Guide 6

241 Controller 5

242 Diagnostic_Signature_Automation_Prod6093_Bugs_Prod6070_Software_Failure 5

243 Diagnostic_Signature_Automation_Prod6093_Prod6070_Software_Failure_Bugs 5

244 Diagnostic_Signature_Prod6070_Automation_Software_Failure_Incident1_Prod6093 5

245 Diagnostic_Signature_Prod6070_Prod6080_Software_Failure_Bugs_Automation_Prod6093 5

246 Diagnostic_Signature_Prod6070_Software_Failure_Incident1_Automation_Bugs_Prod6093 5

247 Diagnostic_Signature_Prod6080_Incident1_Software_Failure_Prod6093_Prod6070 5

248 Diagnostic_Signature_Prod6080_Prod6070_Automation_Bugs_Software_Failure 5

249 Diagnostic_Signature_Prod6082_Prod6014_Prod6093_Automation_Bugs_Software_Failure 5

250
Diagnostic_Signature_Prod6093_Automation_Bugs_Software_Failure_Prod6082_Prod6014_Prod6070_Prod60

80
5

251 Diagnostic_Signature_Prod6093_Automation_Bugs_Software_Failure_Prod6082_Prod6014_Prod6080 5

252 Diagnostic_Signature_Prod6093_Prod6080_Software_Failure_Bugs_Automation 5

253 ISDN 5

254 Diagnostic Signature 4

255 Diagnostic_Signature_Automation_Prod6080_Software_Failure_Bugs_Prod6093 4

256 Diagnostic_Signature_Automation_Prod6082_Prod6014_Prod6080_Software_Failure_Bugs_Prod6093 4

257 Diagnostic_Signature_Automation_Prod6093_Prod6082_Prod6014_Bugs_Software_Failure 4

258 Diagnostic_Signature_Automation_Software_Failure_Bugs_Prod6082_Prod6014_Prod6093 4

259 Diagnostic_Signature_Automation_Software_Limitation_Prod6080_Bugs 4

260 Diagnostic_Signature_Prod6070_Automation_Software_Failure_Incident1 4

261 Diagnostic_Signature_Prod6070_Bugs_Automation_Software_Failure 4

262 Diagnostic_Signature_Prod6070_Prod6093_Bugs_Software_Failure_Automation 4

263 Diagnostic_Signature_Prod6070_Software_Failure_Prod6093_Automation_Bugs 4

264 Diagnostic_Signature_Prod6079_Software_Failure_Automation_Prod6093_Bugs 4

265
Diagnostic_Signature_Prod6080_Prod6070_Prod6082_Prod6014_Prod6082_Prod6010_Prod6082_Prod6012_

Automation_Bugs_Software_Failure_Prod6093
4

62

Tag / Label Events

266
Diagnostic_Signature_Prod6082_Prod6014_Automation_Prod6093_Bugs_Software_Failure_Prod6080_Prod60

70
4

267 Diagnostic_Signature_Prod6082_Prod6014_Prod6093_Automation_Bugs_Software_Failure_Incident1 4

268 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Automation_Bugs_Software_Failure 4

269 Diagnostic_Signature_Prod6093_Automation_Prod6082_Prod6014_Bugs_Software_Failure 4

270 Diagnostic_Signature_Prod6093_Prod6070_Automation_Bugs_Software_Failure 4

271 Diagnostic_Signature_Prod6093_Prod6070_Automation_Software_Failure_Bugs 4

272 Diagnostic_Signature_Prod6093_Prod6070_Software_Failure_Automation_Bugs 4

273
Diagnostic_Signature_Prod6093_Prod6077_Prod6082_Prod6009_Prod6082_Prod6010_Prod6082_Prod6012_

Automation_Bugs_Software_Failure
4

274 Diagnostic_Signature_Prod6093_Prod6080_Automation_Bugs_Software_Failure 4

275 Diagnostic_Signature_Prod6093_Prod6082_Prod6014_Software_Failure_Bugs_Automation 4

276 Diagnostic_Signature_Prod6093_Software_Failure_Bugs_Automation_Prod6077 4

277 HA 4

278 IP_Phone 4

279 Prod6045 4

280 Prod6089 4

281 QoS 4

282 AA 3

283 Diagnostic_Signature_Automation_Prod6070_Bugs_Software_Failure_Automation 3

284 Diagnostic_Signature_Automation_Prod6082_Prod6014_Software_Failure_Prod6093_Bugs 3

285 Diagnostic_Signature_Automation_Prod6093_Bugs_Prod6080_Software_Failure 3

286 Diagnostic_Signature_Automation_Prod6093_Bugs_Software_Failure_Prod6070 3

287 Diagnostic_Signature_Automation_Prod6093_Diagnostic-signature 3

288 Diagnostic_Signature_Automation_Prod6093_Prod6070_Bugs_Software_Failure 3

289
Diagnostic_Signature_Automation_Software_Failure_Bugs_Prod6070_Prod6080_Prod6082_Prod6014_Prod60

93
3

290 Diagnostic_Signature_Prod6070_Automation_Bugs_Prod6093_Software_Failure 3

291 Diagnostic_Signature_Prod6070_Automation_Bugs_Software_Failure_Prod6093_Prod6080 3

292 Diagnostic_Signature_Prod6070_Prod6093_Automation_Software_Failure_Bugs 3

293 Diagnostic_Signature_Prod6070_Prod6093_Bugs_Automation_Software_Failure_Prod6080 3

294 Diagnostic_Signature_Prod6080_Automation_Bugs_Software_Failure 3

295 Diagnostic_Signature_Prod6080_Automation_Prod6082_2000_Software_Failure_Bugs_Prod6093 3

296 Diagnostic_Signature_Prod6080_Automation_Software_Failure_Prod6093_Bugs 3

297 Diagnostic_Signature_Prod6080_Bugs_Software_Failure_Prod6093_Automation 3

298 Diagnostic_Signature_Prod6080_Enhancement_Bugs_Automation 3

299 Diagnostic_Signature_Prod6080_Prod6070_Automation_Software_Failure_Bugs_Prod6093 3

300
Diagnostic_Signature_Prod6082_Prod6010_Prod6082_Prod6012_Prod6093_Software_Failure_Bugs_Automati

on
3

301 Diagnostic_Signature_Prod6082_Prod6014_Prod6093_Software_Failure_Automation 3

302 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Bugs_Automation_Prod6093 3

303 Diagnostic_Signature_Prod6093_Automation_Software_Failure_Bugs_Prod6082_Prod6014 3

304 Diagnostic_Signature_Prod6093_Prod6077_Software_Failure_Automation 3

305 Diagnostic_Signature_Software_Failure_Automation_Prod6070_Prod6093_Bugs 3

306 Diagnostic_Signature_vpc_Prod6058_inactive_Prod6083_Prod6076_AA 3

307 inactive 3

308 netflow 3

309 Prod6058 3

310 Prod6071 3

311 Prod6074 3

312 Prod6076 3

313 Prod6090 3

314 Specialized_IC 3

315 vpc 3

63

Tag / Label Events

316 Diagnostic_Signature_Automation_Prod6093_Diagnostic signature 2

317 Diagnostic_Signature_Automation_Prod6093_Software_Failure_Prod6080_Prod6093 2

318 Diagnostic_Signature_Prod6070_Automation_Incident1_Prod6093_Software_Failure 2

319 Diagnostic_Signature_Prod6070_Automation_Software_Failuref_Bugs_Prod6093 2

320 Diagnostic_Signature_Prod6077_Automation_Prod6093_Bugs_Software_Failure 2

321 Diagnostic_Signature_Prod6080_Prod6070_Software_Failure_Automation_Prod6093_Bugs 2

322 Diagnostic_Signature_Prod6080_Prod6070_Software_Failure_Bugs_Automation_Prod6093 2

323 Diagnostic_Signature_Prod6080_Prod6082_2000_Bugs_Software_Failure_Automation_Prod6093 2

324
Diagnostic_Signature_Prod6082_Prod6010_Prod6093_Prod6082_Prod6012_Software_Failure_Bugs_Automati

on
2

325 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Automation_Prod6093_Bugs 2

326 Diagnostic_Signature_Prod6093_Automation_Bugs_Software_Failure_Prod6070 2

327 Diagnostic_Signature_Prod6093_Automation_Prod6080_Software_Failure_Bugs 2

328 Diagnostic_Signature_Prod6093_Automation_Software_Failure_Prod6082_Prod6014_Bugs 2

329 Diagnostic_Signature_Prod6093_Bugs_Software_Failure_Prod6082_Prod6014_Prod6080_Automation_Bugs 2

330 Diagnostic_Signature_Prod6093_Software_Failure_Bugs_Automation_Prod6082_Prod6014 2

331 Diagnostic_Signature_Software_Failure_Automation_Prod6093_Prod6070_Bugs 2

332 Diagnostic_Signature_Software_Failure_Bugs_Prod6093_Automation_Prod6082_Prod6014 2

333 DSP 2

334 FD Error 2

335 Netstack 2

336 Prod6091 2

337 PVDM 2

338 Clientless 1

339 Clocking 1

340 Diagnostic_Signature_Automation_Diagnostic signature 1

341 Diagnostic_Signature_Automation_Prod6093_Software_Failure_Bugs_Prod6080 1

342 Diagnostic_Signature_Detect6350 1

343 Diagnostic_Signature_Prod6070_Prod6080_Bugs_Software_Failure_Automation 1

344 Diagnostic_Signature_Prod6070_Prod6093_Automation_Bugs_Software_Failure 1

345 Diagnostic_Signature_Prod6070_Software_Failure_Bugs_Automation 1

346 Diagnostic_Signature_Prod6080_Automation_Software_Failure_Bugs 1

347 Diagnostic_Signature_Prod6080_Bugs_Software_Failure_Automation 1

348 Diagnostic_Signature_Prod6080_Prod6093_Automation_Software_Failure_Bugs 1

349 Diagnostic_Signature_Prod6080_Software_Failure_Bugs_Automation 1

350
Diagnostic_Signature_Prod6082_2000_Prod6082_Prod6010_Prod6082_Prod6012_Prod6093_Software_Failure

_Field_Notice_Bugs_Automation
1

351
Diagnostic_Signature_Prod6082_Prod6010_Prod6082_Prod6012_Prod6093_Bugs_Automation_Software_Failu

re
1

352 Diagnostic_Signature_Prod6082_Prod6014_Bugs_Software_Failure_Automation_Prod6093 1

353 Diagnostic_Signature_Prod6082_Prod6014_Prod6093_Software_Failure_Automation_Bugs 1

354 Diagnostic_Signature_Prod6082_Prod6014_Prod6093_Software_Failure_Bugs 1

355 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Automation_Bugs_Prod6093 1

356 Diagnostic_Signature_Prod6082_Prod6014_Software_Failure_Prod6093_Automation_Bugs 1

357 Diagnostic_Signature_Prod6093_Diagnostic Signature_Automation 1

358 Diagnostic_Signature_Prod6093_Prod6070_Bugs_Automation_Software_Failure 1

359 Diagnostic_Signature_Prod6093_Prod6082_Prod6014_Software_Failure_Automation_Bugs 1

360 Diagnostic_Signature_Prod6093_Prod6084 1

361 Diagnostics 1

362 Failure 1

64

Appendix C – Issue Module IDs

Issue Devices Events

1 long_cpu_hog_Prod126 9259 220964

2 asa_high_cpu_Prod126 7474 153901

3 Low_Free_Memory_Available 6861 148278

4 memory_used_greater_than_100percent_Prod334 6837 148259

5 snmp_cpu_hog_Prod126 6676 150181

6 extremely_long_cpu_hog 6282 144878

7 CPU_hogs_due_to_SNMP_polling 4724 33040

8 Defect2938_Defection_in_memory 3509 26063

9 low_memory_Prod126 479 4314

10 Prod128_compliancy_checks_CPU_memory_failure_Prod126 187 3172

11 recent_datapath_CPU_hogs 53 115

12 4500_CPU_Tshoot 2 8

13 bdblib_show_proc_cpu_Prod356_v2 2 496

14 Defect1477_memory_leak_qos_mon_periodic 2 482

15 Defect5215_memory_leak_auth_manager 2 277

16 EEM_Tool_HighCPU 2 344

17 memory_validation_Prod357_fork 2 337

18 Prod262_Defect1460_CPU_queue_gets_stuck 2 6

19 Prod262_Defect4512_Defect3013_Port_sec_DHCPv6_clogging_CPU 2 5

20 Prod262_Defect4785_memory_inconsistency_Defected 2 9

21 Prod269_Defect4070_High_cpu 2 9

22 Prod269_Prod797_high_memory_util 2 15

23 Prod270_Defect1161_CPU_HOG_UDLD 2 18

24 Prod270_Defect2395_high_cpu_6704 2 6

25 Prod270_Defect2835_cpu_hog 2 11

26 Prod357_Defect1895_High_memory_utilization 2 5

27 Prod357_Defect2440_Prod267_High_CPU 2 103

28 Prod357_Defect2876_Memory_leak_observed 2 151

29 Prod357_Defect3527_High_CPU_utilization 2 46

30 Prod357_Defect4104_Memory_leak_on 2 154

31 Prod357_Defect4596_IO_pool_memory 2 86

32 Prod357_Defect4740_Prod140_Memory_Leak 2 48

33 Prod357_Defect5358_High_CPU_due 2 13

34 Prod357_Defect5996_Low_memory_issues 2 120

35 Prod357_Defect6239_Prod266_High_CPU 2 138

36 Prod357_Defect6339_High_memory_utilization 2 27

37 Prod357_Defect6452_Memory_leak_with 2 161

38 Prod357_Defect684_CPUHOG_seen_during 2 16

39 Prod357_Defect6968_Prod198_High_CPU 2 132

40 Prod357_Defect7159_Temporary_high_CPU 2 45

41 Prod359_Defect309_Share_line_memory 2 5947

42 Prod359_Defect919_Memory_leak_observed 2 4355

43 Prod575_Defect2627_Prod507_VccP_Memory_Component_Issue 2 19535

44 Prod575_Defect2855_Enh_Need_CPU 2 8

45 Prod575_Defect3349_PTP_memory_leak_leading_to_a_crash 2 46

46 Prod575_Defect3981_Prod526_Kernel_Panic_watchdog_timeout_issue_on_CPU2 2 18028

47 Prod575_Defect5472_Prod489_eem_policy_dir_memory 2 420

48 Prod575_Defect6027_SNMPd_Memory_Leak_in_libport_mgr_common 2 19535

49 Prod575_Defect7241_DHCP_paks_punted_to_CPU_when_feature_is_disabled_on_trans 2 19533

50 Defect1477_memory_leak_qos_mon_periodic [!](DUPLICATE 1) 1 2

51 Prod121_Defect5742_Memory_leak_in_DP_udp_host_logging 1 4

52 Prod247_Prod254_Defect5263_memory_leak_Event198 1 6

65

Issue Devices Events

53 Prod262_Defect6805_Memory_leak_under_Event199 1 1

54 Prod357_Defect1075_Confusing_CPU_Over 1 103

55 Prod357_Defect1466_cman-fpcman-cc_slow_memory 1 77

56 Prod357_Defect1497_Buffer_memory_leak 1 44

57 Prod357_Defect1610_Event401_Spurious_memory 1 127

58 Prod357_Defect1784_Prod263_memory_leak 1 6

59 Prod357_Defect2106_X25_memory_leak 1 13

60 Prod357_Defect2174_IO_memory_leak 1 157

61 Prod357_Defect2291_High_CPU_and 1 3

62 Prod357_Defect2382_Memory_leak_under 1 47

63 Prod357_Defect263_Memory_exhaustion_by 1 60

64 Prod357_Defect2805_CPU_hog_TB 1 5

65 Prod357_Defect338_memory_leak_in 1 1

66 Prod357_Defect3398_ISDN_memory_leak 1 310

67 Prod357_Defect345_SSLVPN_PROCESS_memory_leak 1 123

68 Prod357_Defect351_Memory_leak_in 1 3

69 Prod357_Defect3573_Memory_Fragmentation_in 1 27

70 Prod357_Defect3769_Event364_CPUHOG_1_fed 1 94

71 Prod357_Defect3902_Prod254_-_Memory 1 32

72 Prod357_Defect4035_Memory_Leak_in 1 73

73 Prod357_Defect4114_High_memory_utilization 1 115

74 Prod357_Defect4172_Prod150_memory_leak 1 16

75 Prod357_Defect4329_Memory_leak_when 1 226

76 Prod357_Defect4501_Memory_leak_under 1 108

77 Prod357_Defect4581_NHRP_CPUHOGs_seen 1 2

78 Prod357_Defect47_AP_IO_memory 1 2

79 Prod357_Defect5279_ESP_Committed_memory 1 131

80 Prod357_Defect5309_Memory_leak_in 1 3

81 Prod357_Defect5957_Memory_buildup_with 1 143

82 Prod357_Defect6067_CSM_memory_leak 1 5

83 Prod357_Defect6096_Memory_Leak_due 1 133

84 Prod357_Defect6660_Memory_leak_at 1 10

85 Prod357_Defect6936_Prod312_-_Memory 1 68

86 Prod357_Defect711_High_memory_utilization 1 102

87 Prod357_Defect7145_Prod16_High_CPU 1 36

88 Prod357_Defect7260_High_CPU_in 1 13

89 Prod359_Defect1716_ISDN_Memory_Leak 1 2587

90 Prod359_Defect6820_corrupted_memory_crash 1 3852

91 Prod575_Defect1170_With_VXLAN_VPC_IPV6_RA_leaving_Prod553_CPU 1 29

92 Prod575_Defect6010_High_CPU_caused 1 434

93 Prod575_Defect6333_Prod553_Prod60_memory 1 3

94 show_proc_cpu_Prod356_v2 1 3

66

References

Albert, S. (2018, November 13). Boosting with AdaBoost and Gradient Boosting.

Medium. https://medium.com/diogo-menezes-borges/boosting-with-adaboost-

and-gradient-boosting-9cbab2a1af81

Allen, D. M., & Goloubew, D. (2020). Customer Self-remediation of Proactive Network

Issue Detection and Notification. In H. Degen & L. Reinerman-Jones (Eds.),

Artificial Intelligence in HCI (pp. 197–210). Springer International Publishing.

https://doi.org/10.1007/978-3-030-50334-5_13

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1), 11–33.

https://doi.org/10.1109/TDSC.2004.2

Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano,

F., & Caicedo, O. M. (2018). A comprehensive survey on machine learning for

networking: Evolution, applications and research opportunities. Journal of

Internet Services and Applications, 9(1), 16. https://doi.org/10.1186/s13174-018-

0087-2

Brownlee, J. (2016, August 16). A Gentle Introduction to XGBoost for Applied Machine

Learning. Machine Learning Mastery.

https://machinelearningmastery.com/gentle-introduction-xgboost-applied-

machine-learning/

Brownlee, J. (2017, August 31). How to Diagnose Overfitting and Underfitting of LSTM

Models. Machine Learning Mastery.

https://machinelearningmastery.com/diagnose-overfitting-underfitting-lstm-

models/

Brownlee, J. (2019, November 26). How to Choose a Feature Selection Method For

Machine Learning. Machine Learning Mastery.

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-

data/

67

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7

Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using recurrent neural network

models for early detection of heart failure onset. Journal of the American Medical

Informatics Association : JAMIA, 24(2), 361–370.

https://doi.org/10.1093/jamia/ocw112

Chollet, F., & Allaire, J. J. (2018). Deep learning with R. Manning Publications Co.

Chollet, F., & others. (2015). Keras. https://keras.io

Cisco Systems. (n.d.). Cisco Nexus 1000V - Configuring Telnet. Cisco. Retrieved

August 18, 2020, from

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/4_0/se

curity/configuration/guide/n1000v_security/security_7telnet.html

Cisco Systems. (2016). Troubleshooting High CPU Utilization. Cisco.

https://www.cisco.com/c/en/us/support/docs/routers/10000-series-routers/15095-

highcpu.html

Cisco Systems. (2017). Connected_TAC_At-A-Glance.pdf.

https://www.cisco.com/c/dam/en/us/support/docs/services/connected-

tac/Connected_TAC_At-A-Glance.pdf

Cisco Systems. (2020). Cisco Diagnostic Bridge Installation and User Guide.

https://www.cisco.com/c/dam/en/us/support/docs/services/connected-

tac/Cisco_Diagnostic_Bridge_Getting_Started_Guide.pdf

Cisco Telnet Vulnerability. (2020, June).

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

telnetd-EFJrEzPx

Conway, & Gehlenborg. (2019). UpSetR Basic Usage. https://cran.r-

project.org/web/packages/UpSetR/vignettes/basic.usage.html

68

Czakon, J. (2020, January 16). The ultimate guide to binary classification metrics.

Medium. https://towardsdatascience.com/the-ultimate-guide-to-binary-

classification-metrics-c25c3627dd0a

Dutta, A. (2019, December 26). System Failure Prediction using log analysis. Medium.

https://towardsdatascience.com/system-failure-prediction-using-log-analysis-

8eab84d56d1

Eusgeld, I., Freiling, F., & Reussner, R. (2008). Dependability Metrics. 304.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8),

861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need

hundreds of classifiers to solve real world classification problems? The Journal of

Machine Learning Research, 15(1), 3133–3181.

Financial Times. (2020). CSCO.

https://markets.ft.com/data/equities/tearsheet/profile?s=CSCO:NSQ

Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System

Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504

Futoma, J., Hariharan, S., & Heller, K. (2017). Learning to Detect Sepsis with a

Multitask Gaussian Process RNN Classifier. ArXiv:1706.04152 [Stat].

http://arxiv.org/abs/1706.04152

Ganguly, S., Consul, A., Khan, A., Bussone, B., Richards, J., & Miguel, A. (2016). A

Practical Approach to Hard Disk Failure Prediction in Cloud Platforms: Big Data

Model for Failure Management in Datacenters. 2016 IEEE Second International

Conference on Big Data Computing Service and Applications (BigDataService),

105–116. https://doi.org/10.1109/BigDataService.2016.10

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2

edition). O’Reilly edia.

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research, 3, 26.

69

Huang, X. (2017). Hard Drive Failure Prediction for Large Scale Storage System

[UCLA]. https://escholarship.org/uc/item/11x380ng

IBM. (2014, October 24). Detecting flapping events.

www.ibm.com/support/knowledgecenter/ssurrn/com.ibm.cem.doc/em_flapping.ht

ml

IEC. (2015). IEC 60050-192: Dependability. https://webstore.iec.ch/publication/21886

IT Operations Analytics—BMC Software. (2020). https://www.bmc.com/it-solutions/it-

analytics.html

Jin Huang, & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning

algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–

310. https://doi.org/10.1109/TKDE.2005.50

Kochs, H.-D. (2018). System Dependability Evaluation Including S-dependency and

Uncertainty. Springer International Publishing. https://doi.org/10.1007/978-3-319-

64991-7

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York.

https://doi.org/10.1007/978-1-4614-6849-3

Maklin, C. (2019). AdaBoost Classifier Example In Python. Towards Data Science.

https://towardsdatascience.com/machine-learning-part-17-boosting-algorithms-

adaboost-in-python-d00faac6c464

 alhotra, P., Vig, L., hroff, ., & garwal, P. (). Long Short Term Memory

Networks for Anomaly Detection in Time Series. Computational Intelligence, 7.

Paasche, F. (1918). Bemerkninger. Samtiden, 29(8).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–

2830.

Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A Survey of Predictive

Maintenance: Systems, Purposes and Approaches. ArXiv:1912.07383 [Cs,

Eess]. http://arxiv.org/abs/1912.07383

70

Raschka, S., & Mirjalili, V. (2019). Python Machine Learning: Machine Learning and

Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition.

Reinkemeyer, L. (Ed.). (2020). Process Mining in Action: Principles, Use Cases and

Outlook. Springer International Publishing. https://doi.org/10.1007/978-3-030-

40172-6

Rodriguez, J. (2017, October 2). A Different Way to Think About Overfitting and

Underfitting in Machine Learning Part I: Capacity. Medium.

https://medium.com/@jrodthoughts/a-different-way-to-think-about-overfitting-and-

underfitting-in-machine-learning-part-i-capacity-738aa1bd5498

Roeder, L. (2020). Lutzroeder/netron [JavaScript]. https://github.com/lutzroeder/netron

(Original work published 2010)

Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online failure prediction methods.

ACM Computing Surveys, 42(3), 1–42. https://doi.org/10.1145/1670679.1670680

Shmueli, B. (2020, May 20). Matthews Correlation Coefficient is The Best Classification

Metric You’ve Never Heard Of. Medium. https://towardsdatascience.com/the-

best-classification-metric-youve-never-heard-of-the-matthews-correlation-

coefficient-3bf50a2f3e9a

Singh, A. (2018, June 18). Ensemble Learning. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-

ensemble-models/

What is an EHR? (2019). https://www.healthit.gov/faq/what-electronic-health-record-ehr

